32 research outputs found

    Novel Lagrange sense exponential stability criteria for time-delayed stochastic Cohen–Grossberg neural networks with Markovian jump parameters: A graph-theoretic approach

    Get PDF
    This paper concerns the issues of exponential stability in Lagrange sense for a class of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with mixed time delays and Markovian jumping is provided by applying the association of Lyapunov method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some examples with numerical simulations are given to demonstrate the effectiveness of the acquired result

    An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays

    Get PDF
    In this typescript, we concerned the problem of delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays. An advanced Lyapunov–Krasovskii functional are defined, which is in triple integral form. Combining the Lyapunov–Krasovskii functional with convex combination method and free-weighting matrix approach the stability conditions are derived with the help of linear matrix inequalities (LMIs). Some available software collections are used to solve the conditions. Lastly, two numerical examples and their simulations are conferred to indicate the feasibility of the theoretical concepts

    A delay-dividing approach to robust stability of uncertain stochastic complex-valued Hopfield delayed neural networks

    Full text link
    In scientific disciplines and other engineering applications, most of the systems refer to uncertainties, because when modeling physical systems the uncertain parameters are unavoidable. In view of this, it is important to investigate dynamical systems with uncertain parameters. In the present study, a delay-dividing approach is devised to study the robust stability issue of uncertain neural networks. Specifically, the uncertain stochastic complex-valued Hopfield neural network (USCVHNN) with time delay is investigated. Here, the uncertainties of the system parameters are norm-bounded. Based on the Lyapunov mathematical approach and homeomorphism principle, the sufficient conditions for the global asymptotic stability of USCVHNN are derived. To perform this derivation, we divide a complex-valued neural network (CVNN) into two parts, namely real and imaginary, using the delay-dividing approach. All the criteria are expressed by exploiting the linear matrix inequalities (LMIs). Based on two examples, we obtain good theoretical results that ascertain the usefulness of the proposed delay-dividing approach for the USCVHNN model

    Stochastic memristive quaternion-valued neural networks with time delays: An analysis on mean square exponential input-to-state stability

    Full text link
    In this paper, we study the mean-square exponential input-to-state stability (exp-ISS) problem for a new class of neural network (NN) models, i.e., continuous-time stochastic memristive quaternion-valued neural networks (SMQVNNs) with time delays. Firstly, in order to overcome the difficulties posed by non-commutative quaternion multiplication, we decompose the original SMQVNNs into four real-valued models. Secondly, by constructing suitable Lyapunov functional and applying Itoˆ’s formula, Dynkin’s formula as well as inequity techniques, we prove that the considered system model is mean-square exp-ISS. In comparison with the conventional research on stability, we derive a new mean-square exp-ISS criterion for SMQVNNs. The results obtained in this paper are the general case of previously known results in complex and real fields. Finally, a numerical example has been provided to show the effectiveness of the obtained theoretical results

    Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses.

    Get PDF
    Fractional order system is playing an increasingly important role in terms of both theory and applications. In this paper we investigate the global existence of Filippov solutions and the robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses. By means of growth conditions, differential inclusions and generalized Gronwall inequality, a sufficient condition for the existence of Filippov solution is obtained. Then, sufficient criteria are given for the robust generalized Mittag-Leffler synchronization between discontinuous activation function of impulsive fractional order neural network systems with (or without) parameter uncertainties, via a delayed feedback controller and M-Matrix theory. Finally, four numerical simulations demonstrate the effectiveness of our main results.N/

    P A DELAY-RANGE-DEPENDENT MEAN SQUARE STABILITY OF STOCHASTIC SYSTEMS WITH INTERVAL TIME-VARYING DELAYS

    No full text
    Abstract: This paper is concerned with mean square exponential stability of stochastic systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, new delay-dependent sufficient conditions for the mean square exponential stability of the stochastic systems are first established in terms of LMIs

    P A DECENTRALIZED EXPONENTIAL STABILIZATION OF LARGE-SCALE SYSTEMS WITH TIME-VARYING DELAY

    No full text
    Abstract: This paper addresses decentralized exponential stabilization problem for a class of linear large-scale systems with time-varying delay in interconnection is considered. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with LeibnizNewton's formula, new delay-dependent sufficient conditions for the existence of decentralized exponential stability is established in terms of LMIs

    P A EXPONENTIAL STABILITY OF STOCHASTIC HYBRID SYSTEMS WITH NONDIFFERENTIABLE AND INTERVAL TIME-VARYING DELAY

    No full text
    Abstract: This paper addresses exponential stability problem for a class of stochastic hybrid systems with time-varying delay. The time delay is any continuous function belonging to a given interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton's formula, new delay-dependent sufficient conditions for exponential stability of stochastic hybrid systems with time-varying delay are first established in terms of LMIs. AMS Subject Classification: 15A09, 52A10, 74M05, 93D05, 93D20, 94C1
    corecore